Schattenblick → INFOPOOL → NATURWISSENSCHAFTEN → PHYSIK


FORSCHUNG/1430: Fehlerfrei ins Quantencomputer-Zeitalter (idw)


Universität Innsbruck - 18.12.2017

Fehlerfrei ins Quantencomputer-Zeitalter


Heute verfügbare Ionenfallen-Technologien eignen sich als Basis für den Bau von großen Quantencomputern. Das zeigen Untersuchungen eines internationalen Forscherteams, deren Ergebnisse nun in der Fachzeitschrift Physical Review X veröffentlicht wurden. Die Wissenschaftler haben für Ionenfallen maßgeschneiderte Protokolle entwickelt, mit denen auftretende Fehler jederzeit entdeckt und korrigiert werden können.

Damit die heute existierenden Prototypen von Quantencomputern ihr volles Potenzial entfalten, müssen sie erstens viel größer werden, d.h. über deutlich mehr Quantenbits verfügen, und zweitens mit Fehlern umgehen können. "Aufwändige Rechnungen scheitern heute noch daran, dass die Systeme aufgrund von Störungen aus dem Ruder laufen", sagt Rainer Blatt vom Institut für Experimentalphysik der Universität Innsbruck und dem Akademieinstitut für Quantenoptik und Quanteninformation (IQOQI). "Durch Fehlerkorrektur lässt sich dieser Prozess eindämmen." Jeder herkömmliche Computer nutzt solche Verfahren, um Fehler bei der Speicherung und Übertragung von Daten zu erkennen und möglichst zu korrigieren. Dazu wird vor der Datenspeicherung oder Übertragung den Daten Redundanz hinzugefügt, meist in Form zusätzlicher Bits, die zum Erkennen und Korrigieren von Fehlern genutzt wird. Auch für den Quantencomputer wurden ähnliche Verfahren entwickelt, die im Wesentlichen darin bestehen, die Quanteninformation in mehreren, miteinander verschränkten physikalischen Quantenbits zu speichern. "Hier werden die Eigenschaften der Quantenwelt genutzt, um Fehler zu erkennen und zu korrigieren", beschreibt Markus Müller von der Swansea University in Großbritannien. "Wenn es gelingt, die Störungen unter eine bestimmte Schwelle zu drücken, können wir Quantencomputer für beliebig komplexe Rechnungen bauen, indem wir die Zahl der verschränkten Quantenbits entsprechend erhöhen."

Ionen im Labyrinth gefangen

Gemeinsam mit seinem Kollegen Alejandro Bermudez Carballo betont Markus Müller, dass auf dem Weg zu diesem Ziel die Möglichkeiten der technologischen Plattformen bestmöglich ausgenutzt werden müssen. "Für die Fehlerkorrektur benötigen wir Quantenschaltkreise, die besonders stabil sind und auch unter realistischen Bedingungen verlässlich arbeiten, sogar wenn während der Fehlerkorrektur selbst zusätzliche Fehler auftreten", erklärt Bermudez. Sie gemeinsam haben eine Reihe von fehlertoleranten Protokollen weiterentwickelt und untersucht, wie diese mit den heute verfügbaren Operationen auf Quantencomputern umgesetzt werden können. Eine neue Generation von segmentierten Ionenfallen bietet dafür ideale Möglichkeiten: Einzelne Ionen können rasch zwischen verschiedenen Zonen einer Falle hin- und hertransportiert werden. Zeitlich sorgfältig festgelegte Abläufe erlauben parallele Prozesse in unterschiedlichen Speicher- und Rechenzonen. Durch den Einsatz von zwei unterschiedlichen Ionenarten in einer Falle lässt sich die eine Art als Träger der logischen Quantenbits einsetzen, während die andere zur Fehlermessung, Rauschunterdrückung und Kühlung dient.

Neue Generation von Quantencomputern

Auf Basis der experimentellen Erfahrung von Forschungsgruppen in Innsbruck, Mainz, Zürich und Sydney haben die Forscher Kriterien definiert, anhand deren bestimmt werden kann, ob die Quantenfehlerkorrektur erfolgreich ist. Auf dieser Basis können die Wissenschaftler die weitere Entwicklung von Ionenfallen-Quantencomputern leiten, um schon in naher Zukunft ein logisches Quantenbit zu realisieren, das mit Hilfe der Fehlerkorrektur die Eigenschaften eines rein physikalischen Quantenbits übersteigt.

Aufwändige numerische Simulationen der neuen Fehlerkorrekturprotokolle in der Arbeitsgruppe um Simon Benjamin an der Universität Oxford zeigen, wie die Hardware der nächsten Generation von Ionenfallen-Quantencomputern weiterentwickelt werden muss, um in Zukunft fehlertolerant rechnen zu können. "Unsere numerischen Ergebnisse unterstreichen, dass die modernsten Ionenfallen-Technologien als Basis für den Bau von großen, fehlertoleranten Quantencomputern sehr gut geeignet sind", erklärt Benjamin.

Die Forschungen wurden unter anderem vom österreichischen Wissenschaftsfonds FWF und der Tiroler Industrie finanziell unterstützt.

Publikation: Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation.
A. Bermudez, X. Xu, R. Nigmatullin, J. O'Gorman, V. Negnevitsky, P. Schindler, T. Monz, U. G. Poschinger, C. Hempel, J. Home, F. Schmidt-Kaler, M. Biercuk, R. Blatt, S. Benjamin, and M. Müller.
Phys. Rev. X 7, 041061
DOI: 10.1103/PhysRevX.7.041061


Weitere Informationen unter:

http://quantumoptics.at
- Quantum Optics and Spectroscopy Group

http://www.uibk.ac.at/exphys/
- Institut für Experimentalphysik

http://iqoqi.at
- Institut für Quantenoptik und Quanteninformation

http://markus-mueller.website/
- Website Markus Müller

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution345

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Universität Innsbruck, Dr. Christian Flatz, 18.12.2017
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 20. Dezember 2017

Zur Tagesausgabe / Zum Seitenanfang