Schattenblick → INFOPOOL → MEDIZIN → TECHNIK


FORSCHUNG/107: Materialforschung - Kleine Klumpen im Körper ... wie Nanopartikel auf Proteine reagieren (idw)


INM / Leibniz-Institut für Neue Materialien gGmbH - 15.02.2016

Kleine Klumpen im Körper: wie Nanopartikel auf Proteine reagieren

Wissenschaftler des INM - Leibniz-Institut für Neue Materialien fanden heraus, dass das Protein Hämoglobin das Zusammenklumpen einzelner Gold-Nanopartikel beeinflusst.


James Bond ist überall zu orten. Das hat er den Nanosensoren zu verdanken, die im Film "Spectre" über eine Injektion den Weg in Bonds Blutbahn finden. Auch in der echten Welt wird an dieser Vision gearbeitet. Gerade im Blutkreislauf sollte keine unkontrollierte Verklumpung von Partikeln auftreten, damit feine Adern nicht verstopft werden.

Wissenschaftler des INM - Leibniz-Institut für Neue Materialien fanden nun heraus, dass das Protein Hämoglobin das Zusammenklumpen einzelner Gold-Nanopartikel beeinflusst.

Wenn sich Nanopartikel einander nähern und anziehen, werden daraus entweder große Flocken, die mit dem bloßen Auge sichtbar sind, oder jedes Nanopartikel bleibt für sich alleine. Das war bisher die Meinung der Forscher - ganz oder gar nicht. Dass dies nicht die einzigen Möglichkeiten sind, zeigten die Forscher vom INM: Sie entdeckten, dass auch ein Zwischenzustand möglich ist - Nanopartikel, die sich zu mikroskopisch kleinen, nicht sichtbaren Anhäufungen zusammenlagerten.

Die Ergebnisse ihrer Arbeit veröffentlichten die Forscher des INM und der Universität Bayreuth jüngst im Journal ACS NANO.

"Gerade für die Medizin sind diese Ergebnisse interessant", meint Tobias Kraus, Physikochemiker am INM. Denn Nanopartikel würden heute zum Beispiel verwendet, um Medikamente zielgenau an ihren Wirkungsort zu bringen. "Dies ist nur möglich, wenn die Partikel nicht verklumpen, auch nicht zu mikroskopisch kleinen Partikeln. Nur dann können sie sich zum Beispiel durch die feinen Verästelungen der Blutgefäße bewegen. Unsere Ergebnisse zeigen, dass besondere Vorsicht geboten ist, da theoretisch verklumpte Nanopartikel vorliegen können, obwohl man es nicht sieht", sagt Kraus.

In ihrer Studie stellten die Wissenschaftler fest, dass das Konzentrationsverhältnis von Gold-Nanopartikeln und Hämoglobin ausschlaggebend dafür ist, ob große Flocken oder mikroskopisch winzige Anhäufungen entstehen. In Mischungen mit hohen Konzentrationen an Nanopartikeln und wenig Hämoglobin sowie in Mischungen mit sehr wenigen Partikeln und viel Hämoglobin entstanden mikroskopisch winzige Verklumpungen. Bei anderen Konzentrationsverhältnissen verklumpten die Partikel komplett und bildeten sichtbare, dunkle Flocken.

Für ihre mikroskopischen Untersuchungen nutzen die Wissenschaftler Licht, Röntgenstrahlen und Elektronen. Damit konnten sie sowohl die Struktur der mikroskopisch winzigen Klumpen, als auch die Struktur der großen Flocken aufzeigen.


Originalpublikation:
Sebastian T. Moerz, Annette Kraegeloh, Munish Chanana, Tobias Kraus, "Formation mechanism for stable hybrid clusters of proteins and nanoparticles"; ACS Nano 9 (2015) 7, 6696-6705; DOI: 10.1021/acsnano.5b01043

Ihr Experte:
Dr. Tobias Kraus
INM - Leibniz-Institut für Neue Materialien
Leiter Strukturbildung
Stellv. Leiter InnovationsZentrum INM
tobias.kraus@leibniz-inm.de

• Das INM erforscht und entwickelt Materialien - für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung richten die Forscher ihren Blick auf drei wesentliche Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig für industrielle und lebensnahe Anwendungen nutzen? Dabei bestimmen vier Leitthemen die aktuellen Entwicklungen am INM: Neue Materialien für Energieanwendungen, Neue Konzepte für medizinische Oberflächen, Neue Oberflächenmaterialien für tribologische Systeme sowie Nano-Sicherheit und Nano-Bio. Die Forschung am INM gliedert sich in die drei Felder Nanokomposit-Technologie, Grenzflächenmaterialien und Biogrenzflächen.

Das INM - Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken ist ein internationales Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Leibniz-Gemeinschaft und beschäftigt rund 210 Mitarbeiter.

Weitere Informationen finden Sie unter
http://www.leibniz-inm.de

Kontaktdaten zum Absender der Pressemitteilung stehen unter:
http://idw-online.de/de/institution1598

*

Quelle:
Informationsdienst Wissenschaft - idw - Pressemitteilung
INM - Leibniz-Institut für Neue Materialien gGmbH, Dr. Carola Jung, 15.02.2016
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 17. Februar 2016

Zur Tagesausgabe / Zum Seitenanfang