Schattenblick →INFOPOOL →MEDIZIN → TECHNIK

ENTWICKLUNG/1101: Neuer Infrarot-Marker für biologische Bildgebung (idw)


Helmholtz Zentrum München / Deutsches Forschungszentrum für Gesundheit und Umwelt - 09.09.2014

Neuer Infrarot-Marker für biologische Bildgebung



Neuherberg, 09.09.2014. Das fluoreszierende Protein Amrose wird für neuartige Bildgebungsverfahren genutzt. Im Rahmen einer Technologie-Plattform haben Wissenschaftler des Helmholtz Zentrums München diesen Infrarot-Marker mittels evolutionärer Techniken entwickelt, um verbesserte Gewebedarstellungen zu erreichen. Die Ergebnisse sind in der Fachzeitschrift "PLOS ONE" veröffentlicht.

Fluoreszierende Gewebemarker ermöglichen es der biologischen Bildgebung, molekulare Strukturen und Prozesse darzustellen. Dies schafft neue Einblicke in den Organismus und vielfältiges Anwendungspotenzial: von der genauen Abgrenzung eines Tumors über bildgestützte Operationstechniken bis hin zur Verfolgung der Verteilung eines Medikaments im Gewebe.

Das Wissenschaftlerteam um Dr. Ulrike Schoetz, Dr. Nikolas Deliolanis, Dr. Wolfgang Beisker, Professor Dr. Horst Zitzelsberger und Randolph Caldwell vom Helmholtz Zentrum München hat eine Methode entwickelt, mit der sich neuartige Fluoreszenzmarker, die im Infrarotbereich fluoreszieren, herstellen lassen. Diese können je nach eingesetztem Lichtspektrum und untersuchtem Organismus verbesserte Darstellungen liefern. Die Untersuchungen erfolgten u.a. in Kooperation mit dem Max-Planck-Institut für Neurobiologie (Martinsried), der TU Braunschweig und der Bundesanstalt für Materialforschung und -prüfung (Berlin).

Amrose-Varianten mit unterschiedlichen spektralen Eigenschaften

In B-Zellen des Immunsystems, die Antikörper produzieren, findet natürlicherweise eine hohe Rekombination von Gensegmenten statt. Durch Einschleusen von genetischem Material in diese Zellen lässt sich dieser Evolutionsmechanismus nutzen, um neue Gen- und Proteinvarianten zu erzeugen. So haben die Wissenschaftler die Erbinformation des bekannten Fluoreszenzproteins eqFP615 in solche B-Zellen vom Typ DT40 eingebracht, um daraus Proteinvarianten des neuen Infrarot-Markers Amrose mit unterschiedlichen spektralen Eigenschaften herzustellen.

"Die von uns gezeigte Technologie ermöglicht eine einfache und schnelle Optimierung biologischer Fluoreszenz-Marker für verschiedene Fragestellungen der Bildgebung", sagt Studienleiter Caldwell.

Ziel des Helmholtz Zentrums München ist es, Grundlagenforschung schnell für die klinische Anwendung nutzbar zu machen und neue Ansätze für diagnostische und therapeutische Verfahren sowie Prävention zu entwickeln.


Original-Publikation:
Schoetz, U. et al. (2014). Usefulness of a Darwinian system in a biotechnological application: evolution of optical window fluorescent protein variants under selective pressure, PLOS ONE, doi: 10.1371/journal.pone.0107069

Link zur Fachpublikation:
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0107069

Fachlicher Ansprechpartner
Randolph Caldwell
Helmholtz Zentrum München -
Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)
Abteilung Strahlenzytogenetik
Ingolstädter Landstr. 1, 85764 Neuherberg
E-Mail: randolph.caldwell@helmholtz-muenchen.de


Weitere Informationen finden Sie unter
http://www.helmholtz-muenchen.de/aktuelles/uebersicht/pressemitteilungnews/article/25027/index.html


Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.200 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 34.000 Beschäftigten angehören.
www.helmholtz-muenchen.de
Die selbstständige Abteilung Strahlenzytogenetik (ZYTO) untersucht strahleninduzierte Chromosomen- und DNA-Schäden in Zellsystemen und menschlichen Tumoren. Im Mittelpunkt steht die Aufklärung von Mechanismen der Strahlenkarzinogenese und -empfindlichkeit von Tumorzellen. Ziel ist es, Biomarker für den Nachweis strahleninduzierter Tumoren für die personalisierte Strahlentherapie zur Stratifizierung von Patienten zu finden. ZYTO gehört dem Department of Radiation Sciences (DRS) an.

Kontaktdaten zum Absender der Pressemitteilung stehen unter:
http://idw-online.de/de/institution44

*

Quelle:
Informationsdienst Wissenschaft - idw - Pressemitteilung
Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt
Dr. Nadja Becker, 09.09.2014
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 11. September 2014